In recent years, the simplified computation of position and velocity changes in nonlinear systems using Lie groups and Lie algebra has been widely used in the study of robot localization systems. The unscented Kalman filter (UKF) can effectively deal with nonlinear systems through the unscented transformation, and in order to more accurately describe the robot localization system, the UKF method based on Lie groups has been studied successively. The computational complexity of the UKF on Lie groups is high, and in order to simplify its computation, the Lie groups are applied to the manifold, which efficiently handles the state and uncertainty and ensures that the system maintains the geometric constraints and computational simplicity during the updating process. In this paper, a multi-sensor fusion localization method based on an unscented Kalman filter on manifolds (UKF-M) is investigated. Firstly, a system model and a multi-sensor model are established based on an Autonomous Underwater Vehicle (AUV), and a corresponding UKF-M is designed for the system. Secondly, the multi-sensor fusion method is designed, and the fusion method is applied to the UKF-M. Finally, the proposed method is validated using an underwater cave dataset. The experiments demonstrate that the proposed method is suitable for underwater environments and can significantly correct the cumulative error in the trajectory estimation to achieve accurate underwater localization.