2011
DOI: 10.15517/rmta.v18i2.2099
|View full text |Cite
|
Sign up to set email alerts
|

Sensor fusion using entropic measures of dependence

Abstract: As opposed to standard methods of association which rely on measures of central dispersion, entropic measures quantify multivalued relations. This distinction is especially important when high fidelity models of the sensed phenomena do not exist. The properties of entropic measures are shown to fit within the Bayesian framework of hierarchical sensor fusion. A method of estimating probabilistic structure for categorical and continuous valued measurements that is unbiased for finite data collections is presente… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?