“…There are six GMECs, i.e., l T 1· M ≤ b 1 ⇔ M( p 11 ) + M( p 21 ) ≤ 3, l T 2 · M ≤ b 2 ⇔ M( p 12 ) + M( p 21 ) ≤ 2, l T 3 · M ≤ b 3 ⇔ M( p 11 ) + M( p 21 ) + M( p 22 ) ≤ 3, l T 4 · M ≤ b 4 ⇔ M( p 11 ) + M( p 22 ) ≤ 2, l T 5 · M ≤ b 5 ⇔ M( p 11 ) + M( p 12 )+ M( p 21 ) ≤ 3, and l T 6 · M ≤ b 6 ⇔ M( p 11 )+ M( p 12 ) + M( p 21 ) + M( p 22 ) ≤ 3.After we decrease b 6 from b 6 = 3 to b 6 = 2, we have l 1 ≤ l 6 , l 2 ≤ l 6 , l 3 ≤ l 6 , l 4 ≤ l 6 , and l 5 ≤ l 6 as well as b1 ≥ b 6 , b 2 ≥ b 6 , b 3 ≥ b 6 , b 4 ≥ b6 , and b 5 ≥ b 6 . According to Theorem 2, we apparently can identify l T 6 · M ≤ b 6 ⇔ M( p 11 ) + M( p 12 ) + M( p 21 ) + M( p 22 ) ≤ 2 as the unique independent inequality.…”