In conventional farming, farmers have to go around the farmland physically frequently to estimate the various environmental parameters like temperature, humidity, light intensity and soil moisture to harvest the ready crops at the appropriate time in the best soil possible. Although this conventional farming technique has been utilized for many years, it is irregular and fails to exhibit a high productivity rate because farmers sometimes cannot precisely assess all of the environmental parameters. Greenhouse farming, on the other hand, is a technique whereby the farmers grow crops in ecosystem habitats where all environmental factors are modified to suit the crop type. Automation in a greenhouse is a technology through which farmers may monitor and regulate the greenhouse environment automatically from anywhere in the globe at any time. This work aims to develop an automated greenhouse monitoring and controlling system, which integrates multiple sensors such as a temperature sensor, humidity sensor, light-dependent resistor sensor, and soil moisture sensor to obtain potential environmental parameters of the greenhouse, as well as integrate ESP32 development board, to store, process data and provide WiFi functionality. With the help of the Light Dependent Resistor (LDR), Temperature and humidity sensor and soil moisture sensor, the lighting of the bulb, fan activation and pump triggering can be controlled, respectively, whenever the environmental parameters are below the threshold value. Furthermore, with the help of the WiFi capability of the ESP32 development board, the Internet of Things (IoT) is utilized to store data in a database, process the acquired data, and eventually deliver the information to a user's web application for monitoring the environmental parameters in the greenhouse..