High-frequency signal injection sensorless algorithms are widely studied and used for rotor angle estimation in PMSM at low speed or standstill. One of the main drawbacks of such methods is the acoustic noise connected to the voltage injection. In order to minimize this problem, it is advisable to increase the frequency of the injected signal. Thus, many studies focus on square-wave injection at the switching frequency, which is the maximum theoretical frequency. Since these methods exploit the rotor magnetic anisotropy, it is relatively easy to use them in interior PMSMs, where the rotor anisotropy is high. On the contrary, it is hard to exploit them in surface PMSMs, which have an almost symmetric rotor, although a low rotor magnetic anisotropy is still present. In this paper, a sensorless algorithm with switching frequency squarewave injection is developed for surface PMSMs. To increase the signal-to-noise ratio, current oversampling is exploited. The benefits of such a technique are demonstrated with experimental results on a 2 Nm SPMSM.