Since the development of the first biosensor reported, biosensor has received considerable attention due to its high selectivity and sensitivity. Biosensors are highly pursued in order to meet the growing demands and challenges in a large number of analytic applications such as medical diagnosis, food safety control, environmental monitoring, or even military defense. Due to the unique physical, chemical, mechanical and electrical properties, nanomaterials have been widely investigated for their ability and used to fabricate sensors. High surface to volume ratio, good stability, excellent electrocatalytic properties of the nanomaterials plays an important role in the sensitive and selective detection of biomolecules. The synthesis of new nanomaterials with different properties is increasingly common in order to improve these counted properties of nanomaterials. This chapter gives an overview of the importance of the development of novel nanomaterials based biosensors technologies. The use of different funtionalized carbon nanomaterilas, metal oxide nanoparticles, metal nanoparticles, polymeric nanoparticles, quantum dots, graphene sheets and other novel nanomaterials in biosensor technology, and their innovations and advantages are discussed.