There are key differences between the central nervous system (CNS) (brain and spinal cord) and peripheral nervous system (PNS), such as glial cell types, whether there is protection by the blood-brain barrier, modes of synaptic connections, etc. However, there are many more similarities between these two arms of the nervous system, including neuronal structure and function, neuroimmune and neurovascular interactions, and, perhaps most essentially, the balance between neural plasticity (including processes like neuron survival, neurite outgrowth, synapse formation, gliogenesis) and neurodegeneration (neuronal death, peripheral neuropathies like axonopathy and demyelination). This article brings together current research evidence on shared mechanisms of nervous system health and disease between the CNS and PNS, particularly with metabolic diseases like obesity and diabetes. This evidence supports the claim that the two arms of the nervous system are critically linked and that previously understudied conditions of central neurodegeneration or peripheral neurodegeneration may actually be manifesting across the entire nervous system at the same time, through shared genetic and cellular mechanisms. This topic has been critically underexplored due to the research silos between studies of the brain and studies of peripheral nerves and an overemphasis on the brain in neuroscience as a field of study. There are likely shared and linked mechanisms for how neurons stay healthy versus undergo damage and disease among this one nervous system in the body—providing new opportunities for understanding neurological disease etiology and future development of neuroprotective therapeutics.