Freisinger W, Schatz J, Ditting T, Lampert A, Heinlein S, Lale N, Schmieder R, Veelken R. Sensory renal innervation: a kidney-specific firing activity due to a unique expression pattern of voltage-gated sodium channels? Am J Physiol Renal Physiol 304: F491-F497, 2013. First published January 2, 2013; doi:10.1152/ajprenal.00011.2012.-Sensory neurons with afferent axons from the kidney are extraordinary in their response to electrical stimulation. More than 50% exhibit a tonic firing pattern, i.e., sustained action potential firing throughout depolarizing, pointing to an increased excitability, whereas nonrenal neurons show mainly a phasic response, i.e., less than five action potentials. Here we investigated whether these peculiar firing characteristics of renal afferent neurons are due to differences in the expression of voltage-gated sodium channels (Na vs). Dorsal root ganglion (DRG) neurons from rats were recorded by the current-clamp technique and distinguished as "tonic" or "phasic. .67]; P Ͻ 0.05). These findings point to an increased presence of the TTX-resistant Na vs 1.8 and 1.9. Furthermore, tonic neurons exhibited a relatively higher portion of TTX-resistant sodium currents. Interestingly, mRNA expression of TTX-resistant sodium channels was significantly increased in renal, predominantly tonic, DRG neurons. Hence, under physiological conditions, renal sensory neurons exhibit predominantly a firing pattern associated with higher excitability. Our findings support that this is due to an increased expression and activation of TTX-resistant Na vs.