A framework for simulating auditory discrimination experiments, based on an approach from Schädler, Warzybok, Hochmuth, and Kollmeier [(2015). Int. J. Audiol. 54, 100-107] which was originally designed to predict speech recognition thresholds, is extended to also predict psychoacoustic thresholds. The proposed framework is used to assess the suitability of different auditory-inspired feature sets for a range of auditory discrimination experiments that included psychoacoustic as well as speech recognition experiments in noise. The considered experiments were 2 kHz tone-in-broadband-noise simultaneous masking depending on the tone length, spectral masking with simultaneously presented tone signals and narrow-band noise maskers, and German Matrix sentence test reception threshold in stationary and modulated noise. The employed feature sets included spectro-temporal Gabor filter bank features, Mel-frequency cepstral coefficients, logarithmically scaled Mel-spectrograms, and the internal representation of the Perception Model from Dau, Kollmeier, and Kohlrausch [(1997). J. Acoust. Soc. Am. 102(5), 2892-2905]. The proposed framework was successfully employed to simulate all experiments with a common parameter set and obtain objective thresholds with less assumptions compared to traditional modeling approaches. Depending on the feature set, the simulated reference-free thresholds were found to agree with-and hence to predict-empirical data from the literature. Across-frequency processing was found to be crucial to accurately model the lower speech reception threshold in modulated noise conditions than in stationary noise conditions.