2018 Eleventh International Conference on Contemporary Computing (IC3) 2018
DOI: 10.1109/ic3.2018.8530517
|View full text |Cite
|
Sign up to set email alerts
|

Sentiment Analysis of Tweets Using Machine Learning Approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
32
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
2
2

Relationship

0
9

Authors

Journals

citations
Cited by 105 publications
(36 citation statements)
references
References 3 publications
1
32
0
3
Order By: Relevance
“…This is because these platforms are the most frequently used platforms. Preprocessing includes classification of a dataset into a training dataset and testing dataset to carry out tokenization further [2]. Next to it, pre-processing of tweets is done which includes removing handles, removing URLs, timings of tweets, #hashtag, etc.…”
Section: Literature Reviewmentioning
confidence: 99%
See 1 more Smart Citation
“…This is because these platforms are the most frequently used platforms. Preprocessing includes classification of a dataset into a training dataset and testing dataset to carry out tokenization further [2]. Next to it, pre-processing of tweets is done which includes removing handles, removing URLs, timings of tweets, #hashtag, etc.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Next to it, pre-processing of tweets is done which includes removing handles, removing URLs, timings of tweets, #hashtag, etc. [2]. Support Vector Machine (SVM) and Decision tree algorithms are implemented to obtain positive or negative results.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Machine learning techniques can be utilized to reveal valuable knowledge which is hidden in such noisy social media data created on daily basis [15]. There are numerous techniques of machine learning that support learning, such as K-Nearest Neighbors (KNN) [16], Support Vector Machines (SVM) [17], ID3 decision tree [18], Logistic Regression (LR) [19], Naive Bayesian (NB) [20], or Random FIGURE 1. Basic steps of opinion mining on social network platforms.…”
Section: Introductionmentioning
confidence: 99%
“…A classificação de polaridade,é um problema de classificação simples de texto, onde as classes são relativas ao sentimento que está sendo expresso no texto. Entre os classificadores mais utilizados na literatura para essa tarefa, podemos citar o Naive Bayes [Zuo 2018], Máquinas de Vetores de Suporte [Lu andWu 2019, Guan et al 2018], Regressão Logística [Al Omari et al 2019, Ramadhan et al 2017, Arvores de Decisão e Floresta Aleatória [Rathi et al 2018, Rane and Kumar 2018, Hegde and Padma 2017. A classificação de polaridade tambémé um dos temas mais abordados no português, como em [de Aguiar et al 2018, Souza andVieira 2012], onde algoritmos de aprendizagem de máquina foram utilizados para classificar os sentimentos contidos em postagens feitas por usuários de redes sociais, como o Twitter 1 .…”
Section: Introductionunclassified