2018 IEEE 7th International Conference on Adaptive Science &Amp; Technology (ICAST) 2018
DOI: 10.1109/icastech.2018.8506717
|View full text |Cite
|
Sign up to set email alerts
|

Sentiment Analysis with Word Embedding

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 27 publications
(6 citation statements)
references
References 5 publications
0
5
0
1
Order By: Relevance
“…Indeed, the vectors which have the ability to encode the words closer in the vector space are supposed to be an identical meaning. The ‘word2vector’ consists of two different kinds of models, namely, continuous bag of words ( 21 ) and the other one is continuous skip gram ( 22 ). The main idea of the continuous skip gram is to utilize the words to predict its adjoining words ( 23 ).…”
Section: Methodsmentioning
confidence: 99%
“…Indeed, the vectors which have the ability to encode the words closer in the vector space are supposed to be an identical meaning. The ‘word2vector’ consists of two different kinds of models, namely, continuous bag of words ( 21 ) and the other one is continuous skip gram ( 22 ). The main idea of the continuous skip gram is to utilize the words to predict its adjoining words ( 23 ).…”
Section: Methodsmentioning
confidence: 99%
“…Penggunaan algoritma Naïve Bayes dalam sentiment analysis memberikan hasil yang bermacam-macam, tidak ada hasil yang konsisten dan komperhensif untuk jenis data tertentu yang secara tidak langsung memerlukan metode pendamping sehingga dapat diperoleh data yang lebih jelas dan lengkap untuk mendapatkan hasil klasifikasi sentimen yang lebih baik. Dalam penelitian yang dilakukan Oscar B. Deho, dkk [6] diperggunakan Skip-gram yang merupakan varian dari Word2Vec dari teknik ekstraksi Word Embedding dalam meningkatkan akurasi klasifikasi sentimen, hal yang hampir sama juga dilakukan oleh Alif Rizal, dll [7] yang menggunakan Word Embedding Layers dengan dikombinasikan model klasifikasi Long Short-Term Memory Network (LSTM) dalam melakukan klasifikasi sentimen dan mampu menghasilkan nilai precision 80%, nilai recall 81%, fl-score 97% dan accuracy 81% dengan jumlah data yang terbatas, sehingga dapat disimpulkan bahwa teknik ekstraksi Word Embedding mampu meningkatkan akurasi model klasifikasi sentimen.…”
Section: Pendahuluanunclassified
“…Word embedding methods turn words into digital vectors. These vectors include more or less information about the semantics and syntax of the word depending on the model employed and the context in which it was used [37]. There are numerous word embedding strategies available.…”
Section: Documents Containing Imentioning
confidence: 99%