Purpose
Textual information about restaurants, such as online reviews and food categories, is essential for consumer purchase decisions. However, previous restaurant recommendation studies have failed to use textual information containing essential information for predicting consumer preferences effectively. This study aims to propose a novel restaurant recommendation model to effectively estimate the assessment behaviors of consumers for multiple restaurant attributes.
Design/methodology/approach
The authors collected 1,206,587 reviews from 25,369 consumers of 46,613 restaurants from Yelp.com. Using these data, the authors generated a consumer preference vector by combining consumer identity and online consumer reviews. Thereafter, the authors combined the restaurant identity and food categories to generate a restaurant information vector. Finally, the nonlinear interaction between the consumer preference and restaurant information vectors was learned by considering the restaurant attribute vector.
Findings
This study found that the proposed recommendation model exhibited excellent performance compared with state-of-the-art models, suggesting that combining various textual information on consumers and restaurants is a fundamental factor in determining consumer preference predictions.
Originality/value
To the best of the authors’ knowledge, this is the first study to develop a personalized restaurant recommendation model using textual information from real-world online restaurant platforms. This study also presents deep learning mechanisms that outperform the recommendation performance of state-of-the-art models. The results of this study can reduce the cost of exploring consumers and support effective purchasing decisions.