Sentiment Classification of Community towards COVID-19 Issues on Twitter (Case Study: Indonesia, March-May 2020)
Nur Ainun Daulay,
Rifqi Ramadhan,
Lya Hulliyyatus Suadaa
Abstract:This study examines sentiment analysis related to COVID-19 in Indonesia (March-May 2020) using InSet Lexicon as training data in supervised machine learning models. The dataset comprises 7,967 tweets, divided into 90% training data and 10% testing data. The results reveal that Support Vector Machine (SVM) and Random Forest (RF) are the most effective methods, achieving accuracy above 80%, with SVM reaching 87% and RF at 86%. InSet Lexicon itself attains an accuracy of 75%, a macro average of 69%, and a weighte… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.