The goals of imaging in head and neck cancer are to establish tumor extent and size, to assess nodal disease, to evaluate for perineural tumor spread, and to distinguish recurrent tumor from post-treatment changes. MRI is the preferred modality for assessment of nasopharyngeal, sinonasal, and parotid tumors, because of better contrast resolution, high frequency of perineural spread, and less prominent motion artifacts. MRI is the best modality to delineate the extent of intraorbital and intracranial extension of malignant tumors. Tumors of the oropharynx, larynx, and hypopharynx are frequently primarily imaged with CT, which is less affected by breathing and swallowing artifacts. MRI is also the initial study of choice for tumors confined to the oral tongue, and possibly also for other oral cavity locations because MRI is superior in detection of tumor spread into the bone marrow. There is no clear advantage of CT or MRI for evaluation of nodal disease. Positron emission tomography (PET) is very sensitive for metastatic lymph nodes that are at least 8 mm in size and is the technique of choice in dubious cases. Imaging-guided biopsies are performed whenever needed. For imaging of treated head and neck cancer, PET scans have been found to generally offer higher sensitivity than MRI or CT. Combined PET/CT may be the modality of choice because it almost completely eliminates the false-positive and false-negative PET findings. Patients with head and neck cancer who are referred to tertiary care centers commonly arrive with cross-sectional images obtained at other institutions. Reinterpretation of these studies by dedicated radiologists frequently leads to changes in findings, which alter treatment and affect prognosis.