Deforestation in mid-to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes [1][2][3] . In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback 4,5 . This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead 5 . Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner 6,7 . Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 6 0.44 K (mean 6 one standard deviation) northwards of 456 N and 0.21 6 0.53 K southwards. Below 356 N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models 8 .The latitudinal gradient of land-use impact is evident in the comparison of the surface air temperature recorded at FLUXNET (www.fluxnet.ornl.gov) forest towers 9 (Supplementary Table 1 and Supplementary Fig. 1) and surface weather stations in North America (Fig. 1a). Here we use the surface stations as proxies for cleared land. In accordance with the requirement of the World Meteorological Organization, these stations are located in open grassy fields that have biophysical characteristics similar to those of open land, such as being covered by snow in northern latitudes in the winter 10 . Latitude accounts for 31% of the variations in the temperature difference DT between the forest sites and the adjacent open lands (number of site pairs n 5 37). The rate of change in DT with latitude is 20.070 6 0.010 K per degree (mean 6 one standard error, s.e., P , 0.005). At these sites, the annual net all-wave radiation R n