Separation and Analysis of Connected, Micrometer-Sized, High-Frequency Damage on Glass Plates due to Laser-Accelerated Material Fragments in Vacuum
Sabrina Pietzsch,
Sebastian Wollny,
Paul Grimm
Abstract:In this paper, we present a new processing method, called MOSES—Impacts, for the detection of micrometer-sized damage on glass plate surfaces. It extends existing methods by a separation of damaged areas, called impacts, to support state-of-the-art recycling systems in optimizing their parameters. These recycling systems are used to repair process-related damages on glass plate surfaces, caused by accelerated material fragments, which arise during a laser–matter interaction in a vacuum. Due to a high number of… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.