This work presents a combined experimental and theoretical study on a photochromic compound, 2-([1,1'-biphenyl]-4-yl)-2-methyl-6-(4-nitrophenyl)-4-phenyl-1,3 diazabicyclo [3.1.0]hex-3-ene, existing in closed form ('A') and open form ('B'). The spectroscopic properties of the title compound have been investigated by using IR, UV-Vis and 1 H NMR techniques. The molecular geometry and spectroscopic data of the title compound have been calculated by using the density functional method (B3LYP) invoking 6-311G(d,p) basis set. UV-Vis spectra of the two forms were recorded. The excitation energies, oscillator strength, etc., were calculated by time-dependent density functional theory (TD-DFT). Furthermore, molecular electrostatic potential map (MEP), frontier molecular orbital analysis (HOMO-LUMO), total density of state (TDOS) and reactivity descriptors were found and discussed. We applied a first-principles computational approach to study a light-sensitive molecular switch. We find that the conductance of the two isomers varies dramatically, which suggests that this system has potential use as a molecular switch.