Obesity and metabolic syndrome result from excess calorie intake and genetic predisposition and are mechanistically linked to type II diabetes and accelerated body aging; abnormal nutrient and insulin signaling participate in this pathologic process, yet the underlying molecular mechanisms are incompletely understood. Mice lacking the p66 kDa isoform of the Shc adaptor molecule live longer and are leaner than wild-type animals, suggesting that this molecule may have a role in metabolic derangement and premature senescence by overnutrition. We found that p66 deficiency exerts a modest but significant protective effect on fat accumulation and premature death in lep Ob/Ob mice, an established genetic model of obesity and insulin resistance; strikingly, however, p66 inactivation improved glucose tolerance in these animals, without affecting (hyper)insulinaemia and independent of body weight. Protection from insulin resistance was cell autonomous, because isolated p66KO preadipocytes were relatively resistant to insulin desensitization by free fatty acids in vitro. Biochemical studies revealed that p66shc promotes the signal-inhibitory phosphorylation of the major insulin transducer IRS-1, by bridging IRS-1 and the mTOR effector p70S6 kinase, a molecule previously linked to obesity-induced insulin resistance. Importantly, IRS-1 was strongly up-regulated in the adipose tissue of p66KO lep Ob/Ob mice, confirming that effects of p66 on tissue responsiveness to insulin are largely mediated by this molecule. Taken together, these findings identify p66shc as a major mediator of insulin resistance by excess nutrients, and by extension, as a potential molecular target against the spreading epidemic of obesity and type II diabetes.O besity and metabolic syndrome represent ramping public health issues in the Western world, due to overnutrition and reduced physical activity, coupled with genetic susceptibility (1). Although a correct lifestyle remains the mainstream solution to this problem, pharmacological strategies are also being actively seeked; to this end, a better knowledge of the molecular players and biochemical mechanisms linking excess body fat to glucose intolerance and an increased cardiovascular risk is critically needed.Genetic and diet-induced disturbances in insulin and nutrient signaling have been compellingly linked to diabetes, obesity, and accelerated aging (2-4). In particular, deregulated activity of the nutrient-sensitive kinase mTOR (mammalian target of rapamycin) and of its downstream effector S6 kinase (S6K) by high-fat diet or leptin deficiency promotes fat accumulation, induces insulin resistance, and shortens mouse lifespan (5, 6). On the other hand, calorie restriction and hypomorphic mutations or pharmacological blockade within the insulin and mTOR/S6 kinase signaling cascades increase longevity both in lower model organisms and in mammals (7-11), and adipose-specific deletion of the insulin receptor (IR) extends lifespan of FIRKO mice (12).Mice lacking the 66-kDa isoform of the adaptor Shc (Src ...