A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a monofunctional solvating ligand (tri-n-octylphosphine oxide, TOPO). Stability constants for successive nitrato complexes (M(NO3)x(3-x)(aq) where M is Eu(3+), Am(3+), or Cm(3+)) were determined to assist in the calculation of the extraction constant, K(ex), for the metal ions under study. Enthalpies of extraction (ΔH(extr)) for the lanthanide series (excluding Pm(3+)) and Am(3+) by TOPO have been measured using isothermal titration calorimetry. The observed ΔH(extr) were found to be constant at ~29 kJ mol(-1) across the series from La(3+) to Er(3+), with a slight decrease observed from Tm(3+) to Lu(3+). These heats were found to be consistent with enthalpies determined using van't Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (ΔG, ΔH, ΔS) was calculated for Eu(NO3)3, Am(NO3)3, and Cm(NO3)3 extraction by TOPO and Am(3+) and Cm(3+) extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ΔH(extr), presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques.