Objective. Sepsis is one of the most common reasons for hospitalization and in-hospital mortality each year. Noncoding RNAs have been reported not only as diagnostic and prognostic indicators but also as therapeutic targets of sepsis. Herein, we used an integrative computational approach to identify miRNA-mediated ceRNA crosstalk between lncRNAs and genes in sepsis based on the “ceRNA hypothesis” and investigated prognostic roles of hub genes in sepsis. Methods. Two good-quality gene expression datasets with more than 10 patient samples, GSE89376 and GSE95233, were employed to obtain differentially expressed lncRNAs (DElncRNAs) and genes (DEGs) in sepsis. The DElncRNA-miRNA-DEG regulatory network was constructed using a combination of DElncRNA-miRNA pairs and miRNA-DEmRNA pairs. The protein-protein interaction (PPI) network was constructed by mapping DEGs into the STRING database to identify hub genes in sepsis. The clinical and prognostic significance of hub genes was validated in 89 patients with post-traumatic sepsis. Results. The integrative computational approach identified 311 DEGs and 19 DElncRNAs between septic patients and healthy volunteers. Results yielded 122 downDElncRNA-miRNA-downDEG networks based on two lncRNAs, HCP5, and HOTAIRM1, and 36 upDElncRNA-miRNA-upDEG network based on BASP1-AS1. The PPI network identified serum/glucocorticoid regulated kinase 1 (SGK1), arrestin beta 1 (ARRB1), and G protein-coupled receptor 183 (GPR183) as located at the core of the network, and three of them were downregulated in sepsis. SGK1, ARRB1, and GPR183 were all involved in lncRNA HCP5-based ceRNA network. The quantitative real-time PCR revealed that the patients with post-traumatic sepsis exhibited reduced relative mRNA levels of SGK1, ARRB1, and GPR183 compared to the patients without sepsis. The nonsurvivor group, according to the 28-day mortality, showed lower relative mRNA levels of SGK1, ARRB1, and GPR183 than the survivor group. We also demonstrated reduced mRNA levels of SGK1, ARRB1, and GPR183 were associated with sepsis-related death after trauma. Conclusion. Our integrative analysis and clinical validation suggest lncRNA HCP5-based ceRNA networks with SGK1, ARRB1, and GPR183 involved were associated with the occurrence and progression of sepsis.