The process whereby a stimulus or stress at a critical or sensitive period of development has long-term effects is termed "programming." Studies in humans and animals convincingly demonstrate that environmental perturbations in utero may permanently change organ structure and metabolism and/or alter homeostatic regulatory mechanisms among the offspring. These programmed changes may be the origins of adult diseases, including cardiovascular disease, obesity, and diabetes. Throughout evolution and development, humans and animals have been exposed to two common environmental stresses, drought and famine. Notably, drought-induced water deprivation is associated with dehydration anorexia and thus a concomitant potential nutrient stress. Our laboratory has performed studies among pregnant rat and sheep in which we simulate drought conditions via maternal dehydration and famine conditions via nutrient restriction. Maternal dehydration results in low-birth-weight offspring, which demonstrate gender-specific plasma hypernatremia and hypertonicity and arterial hypertension. Gestational nutrient restriction also resulted in low-birth-weight offspring. If permitted rapid catch-up growth by nutrient availability, these offspring demonstrate evidence of increased body weight and body fat, and leptin resistance as adults. Conversely, if the catch-up growth is delayed by nutrition restriction, the offspring exhibit normal body weight, body fat, and plasma leptin levels as adults. These studies indicate that osmoregulatory and cardiovascular homeostasis and phenotypic predisposition to obesity may be programmed in utero. Importantly, these results suggest that programming effects may be either potentiated or prevented by interventions during the neonatal period.