Biomarkers play a crucial role in the diagnosis, prognosis, and therapeutics of cancer. We use biomarkers to identify, image, monitor, and target cancer. In many respects, the discovery of pertinent biomarkers that distinguish fulminant from indolent neoplasms and sensitive from refractory malignancies would be a holy grail of cancer research and therapy. We propose that a stem cell versus genetic theory of cancer may not only enable us to track and trace the biological evolution of cancer but also empower us to attenuate its clinical course and optimize the clinical outcome of patients with cancer. Hence, a biomarker that identifies cancer stem cells (CSCs) and distinguishes them from non-CSCs may serve to elucidate inter-tumoral and intra-tumoral heterogeneity, elevate the values and utility of current prognostic and predictive tests, and enhance drug versus therapy development in cancer care. From this perspective, we focus on CSC biomarkers and discuss stemness or stem-like biomarkers in the context of a unified theory and a consideration of stem cell versus genetic origin. We review their role in primary and mixed tumors, in the elaboration of tumor subtypes, and in the imaging and monitoring of minimal residual diseases. We investigate how scientific theories influence the direction of scientific research and interpretation of experimental results, and how genomics and epigenomics affect the dynamics and trajectories of biomarkers in the conduct of cancer research and in the practice of cancer care.