tRNA guanine transglycosylase (TGT) enzymes are responsible for the formation of queuosine in the anticodon loop (position 34) of tRNA Asp , tRNA Asn , tRNA His , and tRNA Tyr ; an almost universal event in eubacterial and eukaryotic species. Despite extensive characterization of the eubacterial TGT the eukaryotic activity has remained undefined. Our search of mouse EST and cDNA data bases identified a homologue of the Escherichia coli TGT and three spliced variants of the queuine tRNA guanine transglycosylase domain containing 1 (QTRTD1) gene. QTRTD1 variant_1 (Qv1) was found to be the predominant adult form. Functional cooperativity of TGT and Qv1 was suggested by their coordinate mRNA expression in Northern blots and from their association in vivo by immunoprecipitation. Neither TGT nor Qv1 alone could complement a tgt mutation in E. coli. However, transglycosylase activity could be obtained when the proteins were combined in vitro. Confocal and immunoblot analysis suggest that TGT weakly interacts with the outer mitochondrial membrane possibly through association with Qv1, which was found to be stably associated with the organelle. Queuosine (Q 3 ; (7-{[(4,5-cis-dihydroxy-2-cyclo-penten-1-yl)-amino]methyl}-7-deazaguanosine) is a modified 7-deazaguanosine molecule found at the wobble position of transfer RNA that contains a GUN anticodon sequence: tRNA Tyr , tRNA Asn , tRNA His , and tRNA Asp (1). The Q-modification is widely distributed in nature in the tRNA of eubacteria, plants, and animals; a notable exception being yeast and plant leaf cells (2, 3). Interestingly, Q-modification has also been detected in aspartyl tRNA from mitochondria of rat (4) and opossum (5). In most eukaryotes, the Q molecule can be further modified by the addition of a mannosyl group to Q-tRNA Asp and a galactosyl group to Q-tRNA Tyr (1). Eubacteria are unique in their ability to synthesize Q. As part of this biosynthetic process, the eubacterial tRNA guanine transglycosylase (TGT) enzyme inserts the Q precursor molecule, 7-aminomethyl-7-deazaguanine (preQ 1 ) into tRNA, which is then converted to Q by two further enzymatic steps at the tRNA level (6). Eukaryotes by contrast salvage queuosine from food and enteric bacteria either as the free base (referred to as queuine) or as queuosine 5Đ-phosphate subsequent to normal tRNA turnover (7). A Q-related molecule, archaeosine, is found at position 15 of the D loop of most archaeal tRNA, where it functions to stabilize the tRNA structure (8). The enzyme involved in archaeosine biosynthesis is structurally and mechanistically related to the eubacterial TGT but with adaptations necessitated by the differences imposed by its unique substrate and tRNA specificity (9, 10).The crystal structure of the Zymononas mobilis (Z. mobilis) TGT has been determined and revealed the enzyme to be an irregular (â€/âŁ) 8 TIM barrel with a C-terminal zinc-binding subdomain (11). Insight into the residues involved in catalysis came from mutational and kinetic analysis of the recombinant Escherichia coli enzyme...