The secretomes of a virulent Bacillus anthracis strain and of avirulent strains (cured of the virulence plasmids pXO1 and pXO2), cultured in rich and minimal media, were studied by a comparative proteomic approach. More than 400 protein spots, representing the products of 64 genes, were identified, and a unique pattern of protein relative abundance with respect to the presence of the virulence plasmids was revealed. In minimal medium under high CO 2 tension, conditions considered to simulate those encountered in the host, the presence of the plasmids leads to enhanced expression of 12 chromosome-carried genes (10 of which could not be detected in the absence of the plasmids) in addition to expression of 5 pXO1-encoded proteins. Furthermore, under these conditions, the presence of the pXO1 and pXO2 plasmids leads to the repression of 14 chromosomal genes. On the other hand, in minimal aerobic medium not supplemented with CO 2 , the virulent and avirulent B. anthracis strains manifest very similar protein signatures, and most strikingly, two proteins (the metalloproteases InhA1 and NprB, orthologs of gene products attributed to the Bacillus cereus group PlcR regulon) represent over 90% of the total secretome. Interestingly, of the 64 identified gene products, at least 31 harbor features characteristic of virulence determinants (such as toxins, proteases, nucleotidases, sulfatases, transporters, and detoxification factors), 22 of which are differentially regulated in a plasmid-dependent manner. The nature and the expression patterns of proteins in the various secretomes suggest that distinct CO 2 -responsive chromosome-and plasmid-encoded regulatory factors modulate the secretion of potential novel virulence factors, most of which are associated with extracellular proteolytic activities.Bacillus anthracis is a gram-positive spore-forming bacterium that is the etiological agent of anthrax, a lethal disease sporadically affecting humans and animals, in particular herbivores. In its most severe manifestation, B. anthracis infection is initiated by inhalation of spores, which are taken up by alveolar macrophages and germinate into fast-dividing vegetative cells which secrete toxins and virulence factors during growth (81,99). If untreated by prompt antibiotic administration, the bacteria invade the bloodstream, resulting in massive bacteremia and consequently generalized systemic failure and death. B. anthracis is considered to represent a potential biothreat agent, owing to the severity of the anthrax disease, the ease of respiratory contamination, and the perpetual environmental stability of the infective spores. The recent deliberate dissemination of B. anthracis (15) accelerated the efforts to identify new B. anthracis virulence-related determinants for the design of novel diagnostic, preventive, and/or therapeutic strategies.Fully virulent B. anthracis strains harbor two native plasmids, pXO1 and pXO2, which encode critical pathogenicity factors. The absence of either one of the two plasmids results in a pronounce...