The effect of RNA silencing in plants can be amplified if the production of secondary small interfering RNAs (siRNAs) is triggered by the interaction of microRNAs (miRNAs) or siRNAs with a long target RNA. miRNA and siRNA interactions are not all equivalent, however; most of them do not trigger secondary siRNA production.Here we use bioinformatics to show that the secondary siRNA triggers are miRNAs and transacting siRNAs of 22 nt, rather than the more typical 21-nt length. Agrobacterium-mediated transient expression in Nicotiana benthamiana confirms that the siRNAinitiating miRNAs, miR173 and miR828, are effective as triggers only if expressed in a 22-nt form and, conversely, that increasing the length of miR319 from 21 to 22 nt converts it to an siRNA trigger. We also predicted and validated that the 22-nt miR771 is a secondary siRNA trigger. Our data demonstrate that the function of small RNAs is influenced by size, and that a length of 22 nt facilitates the triggering of secondary siRNA production.gene silencing | microRNA | transacting siRNA S mall silencing RNAs (sRNAs) in plants and animals, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in the development and the response to pathogens and stresses. These RNAs are also valuable tools in functional genomics and biotechnology. The sRNAs associate with ARGONAUTE (AGO) and other proteins in silencing effector complexes, and they bind to a target nucleic acid via Watson-Crick base pairing. In most instances, the silencing is a direct consequence of this interaction, and the AGO effector mediates RNA-mediated DNA or histone methylation, endonucleolytic RNA cleavage, or translational inhibition. In a few instances, an sRNA interaction also triggers the production of secondary siRNAs. The targeted RNA is converted into double-stranded RNA (dsRNA) by RNA-DEPENDENT RNA POLYMERASEs (RDRs), which is then cleaved into the secondary siRNAs by DICER-LIKE (DCL) nucleases (1). Several proteins are known to be required for this process, but until now, the reason why most sRNA interactions do not result in secondary siRNA production was unclear.The transacting siRNA (tasiRNA) pathway in plants involves secondary siRNA production (2). Noncoding transcripts encoded by TAS1-4 genes serve as the precursors of tasiRNAs (3-5). After miRNA-directed cleavage, part of the remaining transcript is converted into dsRNA by RDR6. DCL4 then cleaves the dsRNA and generates tasiRNAs in a 21-nt phase relative to positions 10 and 11 of the miRNA that defines the site of targeted cleavage. TAS1 and TAS2 are targets of miR173, and their tasiRNAs in turn can target mRNAs for pentatricopeptide repeat (PPR) proteins. In one instance, a small sRNA cascade is initiated by miR173 (6, 7), because a TAS2-derived tasiRNA can itself initiate secondary siRNA production on several PPR mRNAs. The initiator of TAS3 tasiRNA is miR390 (3,8), and the TAS3 targets are AUXIN RESPONSE FACTOR mRNAs that influence the change from juvenile phase to adult phase, leaf morphology,...