h Helicobacter heilmannii naturally colonizes the stomachs of dogs and cats and has been associated with gastric disorders in humans. Nine feline Helicobacter strains, classified as H. heilmannii based on ureAB and 16S rRNA gene sequences, were divided into a highly virulent and a low-virulence group. The genomes of these strains were sequenced to investigate their phylogenetic relationships, to define their gene content and diversity, and to determine if the differences in pathogenicity were associated with the presence or absence of potential virulence genes. The capacities of these helicobacters to bind to the gastric mucosa were investigated as well. Our analyses revealed that the low-virulence strains do not belong to the species H. heilmannii but to a novel, closely related species for which we propose the name Helicobacter ailurogastricus. Several homologs of H. pylori virulence factors, such as IceA1, HrgA, and jhp0562-like glycosyltransferase, are present in H. heilmannii but absent in H. ailurogastricus. Both species contain a VacA-like autotransporter, for which the passenger domain is remarkably larger in H. ailurogastricus than in H. heilmannii. In addition, H. ailurogastricus shows clear differences in binding to the gastric mucosa compared to H. heilmannii. These findings highlight the low-virulence character of this novel Helicobacter species.
Helicobacter pylori is considered one of the most successful human pathogens. Infection with this agent has been associated with a wide range of gastric disorders. However, H. pylori is not the only Helicobacter species causing gastric disease in humans. Helicobacter heilmannii (sensu stricto), a zoonotic bacterium naturally colonizing the stomachs of cats and dogs, has been associated with gastritis, peptic and duodenal ulcers, and mucosa-associated lymphoid tissue (MALT) lymphoma in humans (1-6). This Helicobacter species is highly prevalent in the stomachs of clinically healthy cats and dogs as well as in those of animals showing chronic active gastritis (1, 4). Its pathogenic significance in these animals remains unclear and is probably strain dependent or related to host differences (1).Little information is available regarding the pathogenesis of H. heilmannii infections in humans (1, 7). A recent experimental infection study, using Mongolian gerbils as an in vivo model to study Helicobacter-related gastric pathology in humans, investigated the colonization capacities and virulence of nine different Helicobacter strains (8). These helicobacters had been isolated from the gastric mucosae of stray cats and had been classified as H. heilmannii on the basis of the ureAB and 16S rRNA gene sequences (9). At 9 weeks postinfection, the induction of an antrum-dominant chronic active gastritis associated with the formation of lymphocytic aggregates and upregulation of the proinflammatory cytokine interleukin 1 (IL-1) was shown for seven strains. However, differences in the expression of IL-1 were noted, together with differences in the intensity of the obser...