Langat virus (LGT) strain TP21 is the most attenuated of the tick-borne flaviviruses for humans. Even though LGT has low-level neurovirulence for humans, it, and its more attenuated egg-passage derivative, strain E5, exhibit significant neurovirulence and neuroinvasiveness in normal mice, albeit less than that associated with tick-borne encephalitis virus (TBEV), the most virulent of the tick-borne flaviviruses. We sought to reduce or ablate these viral phenotypes of TP21 and E5 by using a strategy that had been used successfully in the past to reduce neurovirulence and abolish neuroinvasiveness of TBEV, namely substitution of structural protein genes of the tick-borne flavivirus for the corresponding genes of dengue type 4 virus (DEN4). In pursuit of these objectives different combinations of LGT genes were substituted into the DEN4 genome but only chimeras containing LGT structural proteins premembrane (preM) and envelope glycoprotein (E) were viable. The infectious LGT(preM-E)͞DEN4 chimeras were restricted in replication in simian cell cultures but grew to moderately high titer in mosquito cell culture. Also, the chimeras were at least 5,000 times less neurovirulent than their parental LGT virus in suckling mice. Significantly, the chimeras lacked detectable evidence of neuroinvasiveness after i.p. inoculation of Swiss mice or the more permissive SCID mice with 10 5 or 10 7 plaque-forming units (PFU), respectively. Nonetheless, i.p. inoculation of Swiss mice with 10 or 10 3 PFU of either chimeric virus induced LGT neutralizing antibodies and resistance to fatal encephalitis caused by i.p. challenge with LGT TP21. The implications of these observations for development of a live attenuated TBEV vaccine are discussed.Tick-borne flaviviruses are endemic throughout most of the Northern Hemisphere, causing disease of varying severity that can have a mortality as high as 20-30% (1). Similar to all flaviviruses, viruses of the tick-borne group have a positive sense nonsegmented RNA genome that encodes a single long polyprotein that is processed to yield capsid (C), premembrane (preM), envelope glycoprotein (E) structural proteins followed by nonstructural protein NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 in that order (2, 3). These tick-borne viruses share envelope glycoprotein epitopes that often induce cross-resistance among viruses of the group. These properties of antigenic crossreactivity and virulence polymorphism suggested that successful immunization might be achieved by using a live, naturally attenuated tick-borne flavivirus. The impetus for this approach was the recovery of a virus from ticks in Malaysia, namely Langat virus (LGT), that did not appear to be associated with human disease under natural conditions (4, 5).Approximately 30 years ago Yelantsev virus (6), which subsequently was shown to be identical to wild-type LGT, strain TP21 (7), was evaluated in 649,479 individuals as a candidate live attenuated vaccine for prevention of tick-borne encephalitis. Studies were discontinued when it was ...