Cellular responses and molecular mechanisms activated by exogenous DNA that
invades cells are only partially understood. This limits the practical use of
gene targeting strategies. Small fragment homologous replacement (SFHR) uses a
small exogenous wild-type DNA fragment to restore the endogenous wild-type
sequence; unfortunately, this mechanism has a low frequency of correction.
In this study, we used a mouse embryonic fibroblast cell line with a stably
integrated mutated gene for enhanced green fluorescence protein. The restoration
of a wild-type sequence can be detected by flow cytometry analysis. We
quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle
control genes. Peculiar temporal gene expression patterns were observed for both
pathways. Different DNA repair pathways, not only homologous recombination, as
well as the three main cell cycle checkpoints appeared to mediate the cellular
response. Eighteen genes were selected as highly significant target/effectors of
SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell
cycle control. Our results increase the knowledge of the molecular mechanisms
involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets
of both the cell cycle and DNA repair machineries were selected for manipulation
to enhance the practical application of SFHR.