Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat.
IMPORTANCEAcinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains.A cinetobacter baumannii is a Gram-negative opportunistic pathogen that causes infections with serious morbidity and mortality and is one of a group of six pathogens responsible for most multidrug-resistant (MDR) nosocomial infections (the ESKAPE pathogens, i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) (1, 2). The pathogen is infamous for its ability to persist in hospital settings, a feature that reflects its capacity for long-term survival on abiotic surfaces through resistance to desiccation and disinfectants (3).Genomic and molecular epidemiological studies of A. baumannii isolates have helped define the pathogen's global population structure, its antibiotic resistance gene repertoire, the size and content of its pangenome, and phylogenetic relationships among outbreak strains (3-6). Three primary clonal lineages (GC1 to GC3) appear responsible for the majority of hospital outbreaks globally (7). Although these lineages display restricted genetic diversity among core genes (7), the species' genome is actually quite dynamic. Strains display striking variability in accessory gene content (5, 8), including antibiotic resistance genes (9), even among related isolates of a single outbreak (10). This genomic variability presumably reflects the actions of transmissible plasmids, insertion elements, phage, integrons, natural transformation, and reco...