Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The increasing global demand for biodiesel is due to the urgent need to replace fossil diesel with a fuel based on renewable energy sources. Although chemical catalysis is widely used to produce biodiesel, it uses harsh operating conditions, has high energy consumption, and generates unwanted byproducts. In this scenario, biocatalysis stands out as an efficient and environmentally friendly alternative to chemical catalysis. In biocatalysis, the use of immobilized enzymes plays an important role in the reduction in costs. In this sense, we investigated the use of the lipase produced by an Amazonian endophytic fungus in an immobilized form in the transesterification of waste cooking oil for biodiesel production. The fungus Endomelanconiopsis endophytica QAT_7AC demonstrated a high production of lipase. The lipolytic extract was precipitated in ethanol, which increased the specific enzyme activity. The lipolytic extract and the precipitated lipolytic extract were immobilized in calcium alginate beads. Immobilization efficiency was over 89%. The immobilized biocatalysts showed thermal stability and were used in the production of biodiesel using waste cooking oil and ethanol. It was possible to reuse them for up to four reaction cycles, with yields greater than 70%. These results prove the efficiency of immobilized biocatalysts in the production of biodiesel from waste oils.
The increasing global demand for biodiesel is due to the urgent need to replace fossil diesel with a fuel based on renewable energy sources. Although chemical catalysis is widely used to produce biodiesel, it uses harsh operating conditions, has high energy consumption, and generates unwanted byproducts. In this scenario, biocatalysis stands out as an efficient and environmentally friendly alternative to chemical catalysis. In biocatalysis, the use of immobilized enzymes plays an important role in the reduction in costs. In this sense, we investigated the use of the lipase produced by an Amazonian endophytic fungus in an immobilized form in the transesterification of waste cooking oil for biodiesel production. The fungus Endomelanconiopsis endophytica QAT_7AC demonstrated a high production of lipase. The lipolytic extract was precipitated in ethanol, which increased the specific enzyme activity. The lipolytic extract and the precipitated lipolytic extract were immobilized in calcium alginate beads. Immobilization efficiency was over 89%. The immobilized biocatalysts showed thermal stability and were used in the production of biodiesel using waste cooking oil and ethanol. It was possible to reuse them for up to four reaction cycles, with yields greater than 70%. These results prove the efficiency of immobilized biocatalysts in the production of biodiesel from waste oils.
Antibiotic resistance is a major problem and a major global health concern. In total, there are 16 million deaths yearly from infectious diseases, and at least 65% of infectious diseases are caused by microbial communities that proliferate through the formation of biofilms. Antibiotic overuse has resulted in the evolution of multidrug-resistant (MDR) microbial strains. As a result, there is now much more interest in non-antibiotic therapies for bacterial infections. Among these revolutionary, non-traditional medications is quorum sensing inhibitors (QSIs). Bacterial cell-to-cell communication is known as quorum sensing (QS), and it is mediated by tiny diffusible signaling molecules known as autoinducers (AIs). QS is dependent on the density of the bacterial population. QS is used by Gram-negative and Gram-positive bacteria to control a wide range of processes; in both scenarios, QS entails the synthesis, identification, and reaction to signaling chemicals, also known as auto-inducers. Since the usual processes regulated by QS are the expression of virulence factors and the creation of biofilms, QS is being investigated as an alternative solution to antibiotic resistance. Consequently, the use of QS-inhibiting agents, such as QSIs and quorum quenching (QQ) enzymes, to interfere with QS seems like a good strategy to prevent bacterial infections. This review sheds light on QS inhibition strategy and mechanisms and discusses how using this approach can aid in winning the battle against resistant bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.