Ischemia-reperfusion procedures induced severe hepatic damages owing to different processes related to hypoxia and reoxygenation (H/R) phases, including the consecutive oxygen free radical (OFR) release. Stress-activated protein kinases (SAPKs) could be activated by extracellular stimuli. The aim of this study was to show whether H/R stress conditions could stimulate these kinases, and especially c-jun-N-terminal kinase (JNK 1 /SAPK 1 ), to reveal a potential role of JNK 1 /SAPK 1 in the control of hepatocyte apoptosis. Primary cultured rat hepatocytes, isolated from other liver cells and blood flow, were subjected to warm and cold hypoxiareoxygenation phases mimicking surgical and transplant conditions. The activation status of SAPKs was evaluated by immunoprecipitation or Western-blotting experiments, whereas apoptosis was assessed by measuring caspase activation and internucleosomal DNA fragmentation in vitro and by TUNEL reaction, in vivo. Hypoxia, and especially hypoxia-reoxygenation, significantly increased JNK 1 /SAPK 1 activation in cultured hepatocytes. Either in warm or cold conditions, OFR scavengers (N-Acetylcystein, Di-Phenyleneiodonium, Deferoxamine) decreased this stimulation. Warm ischemia-reperfusion also led to JNK activation. Hypoxia and especially hypoxia-reoxygenation induced programmed cell death in vivo and in vitro. This last phenomenon was inhibited when hepatocytes were treated with SB 202190, which was described as a potent inhibitor of p38 and JNK activities. Altogether, these results confirmed that JNK 1 /SAPK 1 was activated during the hypoxia-reoxygenation process, and that this activity participated in the onset of the apoptosis program. (HEPATOLOGY 2000;32:1029-1036.)