Increased demand for ethylene has motivated direct ethane dehydrogenation over Pt-based catalysts. PtSn/γ-Al2O3 and PtSnZnCa/γ-Al2O3 catalysts were investigated with the aim of understanding the effect of the pretreatment environment on the state of dispersed Pt for ethane dehydrogenation. The catalysts were prepared by the impregnation method and pretreated in different environments like static air (SA), flowing air (FA), and nitrogen (N2) atmospheres. A comprehensive characterization of the catalysts was performed using Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR), NH3 Temperature-Programmed Desorption (NH3-TPD), X-ray photoelectron spectroscopy (XPS), and Transmission Electron Microscopy (TEM) techniques. The results reveal that the PtSn on Al2O3 catalyst pretreated in the static air environment (PtSn-SA) exhibits 21% ethylene yield with 95% selectivity at 625 °C. XPS analysis found more platinum and tin on the catalyst surface after static air treatment. The overall acidity of the catalysts decreased after thermal treatment in static air. Elemental mapping demonstrated that Pt agglomeration was pronounced in catalysts calcined under flowing air and nitrogen. These factors are responsible for the enhanced activity of the PtSn-SA catalyst compared to the other catalysts. The addition of Zn and Ca to the PtSn catalysts increases the yield of the catalyst calcined in static air (PtSnZnCa-SA). The PtSnZnCa-SA catalyst showed the highest ethylene yield of 27% with 99% selectivity and highly stable activity at 625 °C for 10 h.