The helium droplet is an ideal environment to spectroscopically probe difficult to prepare molecular species, such as radicals, carbenes and ions. The quantum nature of helium at 0.4 K often results in molecular spectra that are sufficiently resolved to evoke an analysis of line shapes and fine-structure via rigorous “effective Hamiltonian” treatments. In this chapter, we will discuss general experimental methodologies and a few examples of successful attempts to efficiently dope helium droplets with organic molecular radicals or carbenes. In several cases, radical reactions have been carried out inside helium droplets via the sequential capture of reactive species, resulting in the kinetic trapping of reaction intermediates. Infrared laser spectroscopy has been used to probe the properties of these systems under either zero-field conditions or in the presence of externally applied, homogeneous electric or magnetic fields.