2019
DOI: 10.1021/acsaem.9b00791
|View full text |Cite
|
Sign up to set email alerts
|

Sequential Cascade Electrocatalytic Conversion of Carbon Dioxide to C–C Coupled Products

Abstract: Cascade catalytic processes perform multi-step chemical transformations without isolating the intermediates. Here, we demonstrate a sequential cascade pathway to convert CO 2 to C 2+ hydrocarbons and oxygenates in a two-step electrocatalytic process using CO as the intermediate. CO 2 to CO conversion is performed by using Ag and further conversion of CO to CC coupled products is performed with Cu. Temporal separation between the two reaction steps is accomplished by situating the Ag electrode upstream of the C… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
59
1
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 81 publications
(65 citation statements)
references
References 57 publications
0
59
1
2
Order By: Relevance
“…In flow electrochemical reactors, active sites are spatially separated so that a product formed upstream is transported to downstream active sites by convection. [63] We give a brief overview on high-entropy alloys (HEAs), nanozymes, and nanocavities by design, as emergent catalyst design concepts that facilitate cascaded electrocatalysis to achieve unprecedented selectivity of desired products.…”
Section: Minireviewsmentioning
confidence: 99%
See 1 more Smart Citation
“…In flow electrochemical reactors, active sites are spatially separated so that a product formed upstream is transported to downstream active sites by convection. [63] We give a brief overview on high-entropy alloys (HEAs), nanozymes, and nanocavities by design, as emergent catalyst design concepts that facilitate cascaded electrocatalysis to achieve unprecedented selectivity of desired products.…”
Section: Minireviewsmentioning
confidence: 99%
“…In cascaded electrocatalysis, the active sites of an electrocatalyst are spatially arranged in a such a way that an intermediate or product generated during a specific electrochemical step at one of the active sites is subsequently converted at the adjacent active site through either surface diffusion, forced convection, or confinement. In flow electrochemical reactors, active sites are spatially separated so that a product formed upstream is transported to downstream active sites by convection . We give a brief overview on high‐entropy alloys (HEAs), nanozymes, and nanocavities by design, as emergent catalyst design concepts that facilitate cascaded electrocatalysis to achieve unprecedented selectivity of desired products.…”
Section: Activity Stability and Selectivitymentioning
confidence: 99%
“…Thus, a promising approach to mitigate the limitations of the CO 2 RR scaling relations is the further direct electrochemical reduction of CO in a second electrocatalytic system. Cascade electrolysis systems have been demonstrated by first reducing CO 2 to CO with Au or Ag, then subsequently flowing the CO to a second electrolyzer or catalyst for a more selective secondary reduction . With OD‐Cu, for instance, the grain boundary active sites promote adjacent CO binding and subsequent C−C bond formation, leading to higher FE for C 2 products such as ethanol and acetate compared to conventional Cu for the electrochemical CO reduction reaction (CORR) .…”
Section: Introductionmentioning
confidence: 99%
“…In elektrochemischen Strçmungsreaktoren sind die aktiven Zentren räumlich getrennt, sodass ein zuerst gebildetes Produkt durch Konvektion zu den folgenden aktiven Zentren transportiert wird. [63] Wir geben einen kurzen Überblick über das Design von Hochentropielegierungen (HEA), Nanozymen und Nanokavitäten als aktuelle Konzepte des Katalysatordesigns, die elektrokatalytische Kaskadenreaktionen erleichtern, um eine beispiellose Selektivität für gewünschten Produkte zu erreichen.…”
Section: Angewandte Chemieunclassified
“…Bei der elektrokatalytischen Kaskadenreaktion werden die aktiven Zentren eines Elektrokatalysators räumlich so angeordnet, dass ein Zwischenprodukt oder ein Produkt, das während eines bestimmten elektrochemischen Schritts an einem der aktiven Zentren erzeugt wird, an den benachbarten aktiven Zentren durch Oberflächendiffusion, erzwungene Konvektion oder Einschluss sequenziell umgewandelt wird. In elektrochemischen Strömungsreaktoren sind die aktiven Zentren räumlich getrennt, sodass ein zuerst gebildetes Produkt durch Konvektion zu den folgenden aktiven Zentren transportiert wird . Wir geben einen kurzen Überblick über das Design von Hochentropielegierungen (HEA), Nanozymen und Nanokavitäten als aktuelle Konzepte des Katalysatordesigns, die elektrokatalytische Kaskadenreaktionen erleichtern, um eine beispiellose Selektivität für gewünschten Produkte zu erreichen.…”
Section: Aktivität Stabilität Und Selektivitätunclassified