Significance
Neurulation has been intensively studied in lower vertebrates, but marked species differences call into question the relevance of these models for human neural tube (NT) closure. Here, using mouse embryos, we demonstrate that mammalian neural fold apposition results from constriction of the open posterior NT, which is biomechanically coupled to the zippering point by an F-actin network. Using the
Zic2
mutant model, we show that genetic predisposition to spina bifida, which likely underlies most human cases, directly affects the biomechanics of closure. We also identify a NT closure point at the caudal end of the embryo. Many spina bifida cases correspond to this anatomic portion of the NT, suggesting that this closure point may be important in humans as well.