Yazılım güvenlik açığının tahmini, güvenli yazılım geliştirmek için önemli bir husustur. Ancak, bir bilgi sistemine saldırı yapıldığında büyük kayıplara neden olabilir. Tehlikeli kodun tespiti büyük çaba gerektirir ve bu da bilinmeyen ciddi sonuçlara yol açabilir. Etkili güvenlik sağlamak ve güvenlik açıklarının oluşmasını önlemek veya güvenlik açıklarını azaltmak için meta-sezgisel tabanlı yaklaşımlar geliştirmeye güçlü bir ihtiyaç vardır. Yazılım güvenlik açığı tahmin modelleri üzerine yapılan araştırmalar, temel olarak, güvenlik açıklarının varlığı ile ilişkili en iyi tahmin ediciler kümesini belirlemeye odaklanmıştır. Buna rağmen, mevcut güvenlik açığı algılama yöntemleri, genel özelliklere veya yerel özelliklere yönelik önyargı ve kaba algılama ayrıntı düzeyine sahiptir. Bu yazıda, önerilen çerçeve, bir saat-çalışma belleği mekanizmasına dayalı yazılım güvenlik açıkları ile ilişkili en iyi optimize edilmiş güvenlik açığı kalıpları kümesi için optimizasyon algoritmalarını geliştirmektedir. Geliştirilen algoritmanın etkinliği, LibTIFF, Pidgin, FFmpeg, LibPNG, Asteriks ve VLC medya oynatıcı veri kümeleri gibi 6 açık kaynak projesine dayanan saatli çalışan bellek mekanizması ile daha da artırılmıştır.