2021
DOI: 10.1109/tsp.2021.3055373
|View full text |Cite
|
Sign up to set email alerts
|

Sequential Inference Methods for Non-Homogeneous Poisson Processes With State-Space Prior

Abstract: The Non-homogeneous Poisson process is a point process with time-varying intensity across its domain, the use of which arises in numerous areas in signal processing and machine learning. However, applications are largely limited by the intractable likelihood function and the high computational cost of existing inference schemes. We present a sequential inference framework that utilises generative Poisson data and sequential Markov Chain Monte Carlo (SMCMC) algorithm to enable online inference in various applic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 30 publications
0
0
0
Order By: Relevance