Highlights
Fluidized bed drying of rice has several advantages that outweigh its disadvantages.
Increasing the drying temperature above 60°C could reduce rice quality.
Research related to energy and exergy efficiencies in fluidized bed dryers of rice is needed.
Abstract.
Rice (Oryza sativa L.) is a staple food for more than half the world’s population. World rice production reached approximately 740 million metric tons (MMT) in 2018 due to the ever-increasing demand driven by population and economic growth. Rice producers face challenges in meeting this demand, especially in developing countries where rice is prone to spoilage if the moisture content is not reduced to a safe level shortly after harvest. Rice producers, particularly in developing countries, typically use conventional drying methods, i.e., sun drying and natural air drying. These methods are time-consuming and environmentally dependent. On the other hand, fluidized bed drying, which is a well established technology, could provide rice producers with an effective drying technique that is quick, practical, affordable, and portable. Several innovative designs for fluidized bed dryers have been developed that could be installed on-farm or off-farm at a reasonable cost. Some studies have mentioned that the main advantage of fluidized bed drying is the increase in drying rate and the reduction of rice spoilage after harvest. Conversely, other studies have raised alarms regarding low rice quality, which is seen as a significant flaw of fluidized bed drying. Due to this lack of consensus, there is a great need to review this drying technology objectively. Therefore, this review article explores fluidized bed drying and details its advantages and disadvantages related to rice drying. It also sheds light on the effects of the operating parameters involved in fluidized bed drying, i.e., rice moisture content, drying temperature, airflow rate, air velocity, drying duration, and tempering duration, on dryer performance and rice quality. Several fluidized bed numerical models are also reviewed and evaluated. Additionally, this review explores the energy and exergy efficiencies of fluidized bed dryers and suggests opportunities for research associated with fluidized bed drying of rice. Keywords: Energy, Exergy, Fluidized bed drying, Fluidized bed modeling, Moisture content, Rice quality, Rough rice, Tempering.