Envelope spectrum analysis is a simple, effective, and classic method for bearing fault identification. However, in the wayside acoustic health monitoring system, owing to the high relative moving speed between the railway vehicle and the wayside mounted microphone, the recorded signal is embedded with Doppler effect, which brings in shift and expansion of the bearing fault characteristic frequency (FCF). What is more, the background noise is relatively heavy, which makes it difficult to identify the FCF. To solve the two problems, this study introduces solutions for the wayside acoustic fault diagnosis of train bearing based on Doppler effect reduction using the improved time-domain interpolation resampling (TIR) method and diagnosis-relevant information enhancement using Weighted-Correlation-Coefficient-Guided Stochastic Resonance (WCCSR) method. First, the traditional TIR method is improved by incorporating the original method with kinematic parameter estimation based on timefrequency analysis and curve fitting. Based on the estimated parameters, the Doppler effect is removed using the TIR easily. Second, WCCSR is employed to enhance the diagnosis-relevant period signal component in the obtained Doppler-free signal. Finally, paved with the above two procedures, the local fault is identified using envelope spectrum analysis. Simulated and experimental cases have verified the effectiveness of the proposed method.