2024
DOI: 10.2322/tjsass.67.1
|View full text |Cite
|
Sign up to set email alerts
|

Sequential Prediction of Hall Thruster Performance Using Echo State Network Models

Kansei ITO,
Naoji YAMAMOTO,
Kai MORINO

Abstract: The discharge current and potential difference between cathode and ground of a Hall thruster were predicted sequentially by Recurrent Neural Network (RNN) in order to optimize operating conditions. The prediction accuracy and calculation cost for three RNN models, the standard Echo State Network (simpleESN), cycle-groupedESN, and Long Short-Term Memory (LSTM) were compared. The ESN model structures were chosen using Bayesian optimization. We calculated the normalized root mean square error (NRMSE) of the model… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance