Cassava peel has been a notable agricultural waste material to researchers because of its potential to produce sugar, a valuable product in the food, agricultural, and cosmetic industries. The peels constitute lignin, hemicellulose, and cellulose, also known as lignocellulosic biomass. Cassava peels must undergo a pre-treatment method to separate the lignocellulosic material effectively. This study aims to investigate the optimal chemical pre-treatment methods and optimal pre-treatment concentration to produce sugar from cassava peel. Cassava peels were pre-treated with sodium hydroxide, sulphuric acid, and methanol with a catalyst (organosolv). Then, enzymatic hydrolysis was performed using cellulase to hydrolyze cellulose to glucose. The glucose yield is quantified using Dinitrosalicylic Acid Assay and a portable blood glucometer. The results showed that pre-treatment using sodium hydroxide at a concentration of 0.05 M at 121°C for 15 minutes gave the highest glucose yield of 4.53±1.20 mg/ml. Glucose produced from 0.05 M sulphuric acid (H2SO4) and 0.2 M organosolv sodium methoxide (MeOH+NaOAc) were 3.55±0.68 mg/ml and 3.29±0.93 mg/ml, respectively. Statistical analysis showed that the effect of different pre-treatment methods and pre-treatment concentrations had a significant glucose yield (P<0.05). Similarly, there was a significant difference (P<0.05) in the glucose yield under different pre-treatment concentrations. Further study on mechanical-assisted chemical pre-treatment methods is recommended.