SummaryBasic helix-loop-helix genes, particularly proneural genes, are well-described triggers of cell differentiation, yet limited information exists on their dynamics, notably in human development. Here, we focus on Neurogenin 3 (NEUROG3), which is crucial for pancreatic endocrine lineage initiation. Using a double reporter to monitor endogenous NEUROG3 transcription and protein expression in single cells in 2D and 3D models of human pancreas development, we show peaks of expression for the RNA and protein at 22 and 11 hours respectively, approximately two-fold slower than in mice, and remarkable heterogeneity in peak expression levels all triggering differentiation. We also reveal that some human endocrine progenitors proliferate once, mainly at the onset of differentiation, rather than forming a subpopulation with sustained proliferation. Using reporter index-sorted single-cell RNA-seq data, we statistically map transcriptome to dynamic behaviors of cells in live imaging and uncover transcriptional states associated with variations in motility as NEUROG3 levels change, a method applicable to other contexts.