2055Our understanding of the molecular control of morphological processes has increased tremendously over recent years through the development and use of high resolution in vivo imaging approaches, which have enabled cell behaviour to be linked to molecular functions. Here we review how such approaches have furthered our understanding of tracheal branching morphogenesis in Drosophila, during which the control of cell invagination, migration, competition and rearrangement is accompanied by the sequential secretion and resorption of proteins into the apical luminal space, a vital step in the elaboration of the trachea's complex tubular network. We also discuss the similarities and differences between flies and vertebrates in branched organ formation that are becoming apparent from these studies.
IntroductionBranching morphogenesis restructures epithelial sheets to give rise to organs of fascinating three-dimensional architecture, as exemplified by the adult lung, the kidney and the vasculature in humans. In Drosophila melanogaster, genetic studies have provided much insight into the regulatory networks that regulate the ordered formation of tracheal branches in the embryo, and into how the different branches coordinate their relative sizes, an issue that is of importance to the physical aspects of branched organ function (Affolter et al., 2003;Ghabrial et al., 2003;Uv et al., 2003). More recently, the development of live-imaging approaches in Drosophila have allowed researchers to take a deeper look at the behaviour of cells during the branching process, and have enabled events at the molecular level to be linked to the behaviour of individual cells or groups of cells.This combination of molecular genetics and live-imaging techniques has provided investigators with a unique opportunity to understand the morphological processes that occur during branching morphogenesis. This review focuses and builds on some of these recent insights, and assesses how they have led to a better understanding of the cellular and molecular processes that contribute to the transformation of simple, two-dimensional epithelial sheets into fascinating, three-dimensional tubular structures that can perform important functions in development and homeostasis. We focus here on the Drosophila tracheal system because several cellular and molecular paradigms, such as cell migration, competition and rearrangement, as well as the elaboration of a complex apical luminal environment, have recently been uncovered in this system that might serve related roles in the formation of other branched organs or tissues; these similarities might help us in the future to gain an even better understanding of how morphogenesis in general is regulated during development.
Tracheal development in the fly embryoThe complex structure of the tracheal system consists of interconnected, metameric units of different-sized tubes that extend over the entire embryo shortly before hatching (Samakovlis et al., 1996b) (see Fig. 1, see also Movie 1 in the supplementary material)....