Direct neuronal reprogramming can be achieved using different approaches: by expressing neuronal transcription factors or microRNAs; and by knocking down neuronal repressive elements. However, there still exists a high variability in terms of the quality and maturity of the induced neurons obtained, depending on the reprogramming strategy employed. Here, we evaluate different long‐term culture conditions and study the effect of expressing the neuronal‐specific microRNAs, miR124 and miR9/9*, while reprogramming with forced expression of the transcription factors Ascl1, Brn2, and knockdown of the neuronal repressor REST. We show that the addition of microRNAs supports neuronal maturation in terms of gene and protein expression, as well as in terms of electrophysiological properties.