2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07 2007
DOI: 10.1109/icassp.2007.367266
|View full text |Cite
|
Sign up to set email alerts
|

Sequential Split Vector Quantization of LSF Parameters using Conditional Pdf

Abstract: A better performing product code vector quantization (VQ) method is proposed for coding the line spectrum frequency (LSF) parameters; the method is referred to as sequential split vector quantization (SeSVQ). The split sub-vectors of the full LSF vector are quantized in sequence and thus uses conditional distribution derived from the previous quantized sub-vectors. Unlike the traditional split vector quantization (SVQ) method, SeSVQ exploits the inter sub-vector correlation and thus provides improved rate-dist… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
9
0
2

Year Published

2007
2007
2014
2014

Publication Types

Select...
4
2

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(11 citation statements)
references
References 19 publications
0
9
0
2
Order By: Relevance
“…Using the optimum inter subvector bit allocation of (12), the minimum overall distortion for the CSVQ method is given as (13) Proof: Using the optimum bit allocation of Theorem 1 (12), the minimum overall distortion IV. SPLIT VQ In this section, we derive the rate-distortion performance expression for the traditional split vector quantization (SVQ) method where the subvectors are quantized independently.…”
Section: Theoremmentioning
confidence: 99%
See 1 more Smart Citation
“…Using the optimum inter subvector bit allocation of (12), the minimum overall distortion for the CSVQ method is given as (13) Proof: Using the optimum bit allocation of Theorem 1 (12), the minimum overall distortion IV. SPLIT VQ In this section, we derive the rate-distortion performance expression for the traditional split vector quantization (SVQ) method where the subvectors are quantized independently.…”
Section: Theoremmentioning
confidence: 99%
“…Using the information-theoretic measures, such as conditional entropy and Kullback-Leibler distance, it is shown that the use of conditional pdf can recover the split loss [11]. We have recently developed a sequential SVQ (SeSVQ) method in [12]; the SeSVQ is a nonparametric method of exploiting the conditional pdf. We have also developed a parametric method of conditional pdf-based SVQ (CSVQ) technique in [13].…”
Section: Introductionmentioning
confidence: 99%
“…Por outro lado, a partição dos vetores impossibilita a detecção de correlações entre subvetores. Este efeitoé chamado de "perda por particionamento" [3].…”
Section: Introductionunclassified
“…Este comportamento está de acordo com a percepção auditiva humana eé razoavelmente operacionalizado pela distorção espectral (SD) logarítmica, como explicado posteriormente na Seção II.Por outro lado, a partição dos vetores impossibilita a detecção de correlações entre subvetores. Este efeitoé chamado de "perda por particionamento" [3].Várias combinações de métodos foram propostas para melhorar o desempenho da QV além da QVP como a quantização vetorial particionada multiestágio (S-MSVQ), usada no codificador de voz AMR-WB [4], ou a quantização vetorial particionada chaveada (SSVQ) [5]. Aquele algoritmo aplica QVP e QV multiestágio ao sinal residual da predição de média móvel da sequência de vetores LSF, enquanto este algoritmo usa codificação por transformadas e QV classificada.Mesmo sendo eficientes estes métodos, a S-MSVQ pode prolongar os efeitos de erros no canal através de seu preditor.…”
unclassified
“…However, an amount of suboptimality remains that is referred to as the split loss [2]. It may be partially counteracted by classified vector quantization (VQ) [3] and by combining split VQ with multistage VQ [4].…”
mentioning
confidence: 99%