Background: Automatic vessel structure segmentation is an essential step towards an automatic disease diagnosis system. The task is challenging due to the variance shapes and sizes of vessels across populations.Methods: A multiscale network with dual attention is proposed to segment vessels in different sizes. The network injects spatial attention module and channel attention module on feature map which size is 1 8 of the input size. The network also uses multiscale input to receive multi-level information, and the network uses the multiscale output to gain more supervision. Results: The proposed method is tested on two publicly available datasets: DRIVE and CHASEDB1. The accuracy, AUC, sensitivity, specificity on DRIVE dataset is 0.9615, 0.9866, 0.7693, and 0.9851, respectively. On the CHASEDB1 dataset, the metrics are 0.9797, 0.9895, 0.8432, and 0.9863 respectively. The ablative study further shows effectiveness for each part of the network. Conclusions: Multiscale and dual attention mechanism both improves the performance. The proposed architecture is simple and effective. The inference time is 12ms on a GPU and has potential for real-world applications. The code will be made publicly available.