The batch adsorptive sequestration of methylene blue from an aqueous solution using unripe Roystonea regia fruit pericarp biomass was investigated in this study. The characteristic nature of the biosorbent was studied using various analytical instruments including Fourier Transform Infra-red spectrophotometer, Scanning Electron Microscope, Energy Dispersive X-ray, X-ray diffractometer, and the Brunauer-Emmett Teller. The adsorption study was perfomed at different experimental conditions including pH, contact time, initial dye concentration, temperature, agitation speed, and biosobent dose. From the results of this study, the optimum biosorption of MB was achieved at 120 min contact time, pH 10, room temperature (298 K), 150 rpm agitation speed and dosage of 100 mg/150 mL dye solution. With 132.30 mgg-1 maximum sorption capacity, the Langmuir isotherm best describes the biosorption equilibrium data. At all initial concentrations, the biosorption kinetics of methylene blue onto the biosorbent fitted best to the pseudo-second order kinetics model, with R2 values ≥ 0.999 and qcal being similar to the qexp. The kinetics study also showed the involvement of intra-particle diffusion in the rate-determining step; although not as the sole limiting step of the sorption process. The results of the thermodynamics study showed the high feasibility, spontaneity, and exothermic nature of the biosorption of methylene blue onto the biosorbent. This study concludes that Roystnea regia fruit pericarp would make an economically viable and renewable biosorbent for practical eco-friendly sequestration of MB dye from wastewaters.