2024
DOI: 10.1049/gtd2.13193
|View full text |Cite
|
Sign up to set email alerts
|

Series arc‐fault diagnosis using convolutional neural network via generalized S‐transform and power spectral density

Penghe Zhang,
Yiwei Qin

Abstract: It is difficult to identify an arc fault accurately when the loads on the user side are more complicated, which hinders the development of low‐voltage monitoring and pre‐warning inspection. This study acquired a series of arc‐fault signals according to IEC 62606. The main time‐frequency features were strengthened with high efficiency by applying the generalized S‐transform to them with a bi‐Gaussian window. Further, the power spectrum density determination allowed for the detection of imperceptible high‐freque… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?