Hepatitis E virus (HEV) infection is emerging in Cameroon and represents one of the most common causes of acute hepatitis and jaundice. Moreover, earlier reports showed evidence of falciparum malaria/HEVcoexistence. Although the Sofosbuvir/Ribavirin combination was recently proposed in the treatment of HEV-infected patients, no specific antiviral drug has been approved so far, thereby urging the search for new therapies. Fortunately, drug repurposing offers a good alternative to this end. In this study, we report the in silico and in vitro activities of 8 licensed antimalarial drugs and two anti-hepatitis C virus agents used as references (Sofosbuvir, and Ribavirin), for repurposing as antiviral inhibitors against HEV. Compounds were docked against five HEV-specific targets including the Zinc-binding non-structural protein (6NU9), RNA-dependent RNA polymerase (RdRp), cryoEM structure of HEV VLP, genotype 1 (6LAT), capsid protein ORF-2, genotype 3 (2ZTN), and the E2s domain of genotype 1 (3GGQ) using the iGEMDOCK software and their pharmacokinetic profiles and toxicities were predicted using ADMETlab2.0. Their in vitro effects were also assessed on a gt 3 p6Gluc replicon system using the luciferase reporter assay. The docking results showed that Sofosbuvir had the best binding affinities with 6NU9 (− 98.22 kcal/mol), RdRp (− 113.86 kcal/mol), 2ZTN (− 106.96 kcal/mol), while Ribavirin better collided with 6LAT (− 99.33 kcal/mol). Interestingly, Lumefantrine showed the best affinity with 3GGQ (-106.05 kcal/mol).
N
-desethylamodiaquine and Amodiaquine presented higher binding scores with 6NU9 (− 93.5 and − 89.9 kcal/mol respectively vs − 80.83 kcal/mol), while Lumefantrine had the greatest energies with RdRp (− 102 vs − 84.58), and Pyrimethamine and
N
-desethylamodiaquine had stronger affinities with 2ZTN compared to Ribavirin (− 105.17 and − 102.65 kcal/mol vs − 96.04 kcal/mol). The biological screening demonstrated a significant (
P
< 0.001) antiviral effect on replication with 1 µM N-desethylamodiaquine, the major metabolite of Amodiaquine. However, Lumefantrine showed no effect at the tested concentrations (1, 5, and 10 µM). The biocomputational analysis of the pharmacokinetic profile of both drugs revealed a low permeability of Lumefantrine and a specific inactivation by CYP3A2 which might partly contribute to the short half-time of this drug. In conclusion, Amodiaquine and Lumefantrine may be good antimalarial drug candidates for repurposing against HEV. Further in vitro and in vivo experiments are necessary to validate these predictions.
Graphic abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s40203-021-00093-y.