Background
Brucellosis is a zoonotic affliction instigated by bacteria belonging to the genus Brucella and is characterized by a diverse range of pervasiveness, multiple transmission routes, and serious hazards. It is imperative to amalgamate the current knowledge and identify gaps pertaining to the role of ticks in brucellosis transmission.
Methods
We systematically searched China National Knowledge Infrastructure (CNKI), WanFang, Google Scholar, and PubMed on the topic published until April 23, 2022. The procedure was performed in accordance with the Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The selected articles were categorized across three major topic areas, and the potential data was extracted to describe evidence-practice gaps by two reviewers.
Results
The search identified 83 eligible studies for the final analyses. The results highlighted the potential capacity of ticks in brucellosis transmission as evidenced by the detection of Brucella in 16 different tick species. The pooled overall prevalence of Brucella in ticks was 33.87% (range: 0.00–87.80%). The review also revealed the capability of Brucella to circulate in parasitic ticks' different developmental stages, thus posing a potential threat to animal and human health. Empirical evidence from in vitro rodent infection experiments has revealed that ticks possess the capability to transmit Brucella to uninfected animals (range: 45.00–80.00%). Moreover, significant epidemiological associations have been found between the occurrence of brucellosis in animals and tick control in rangelands, which further suggests that ticks may serve as potential vectors for brucellosis transmission in ruminants. Notably, a mere three cases of human brucellosis resulting from potential tick bites were identified in search of global clinical case reports from 1963 to 2019.
Conclusions
It is imperative to improve the techniques used to identify Brucella in ticks, particularly by developing a novel, efficient, precise approach that can be applied in a field setting. Furthermore, due to the lack of adequate evidence of tick-borne brucellosis, it is essential to integrate various disciplines, including experimental animal science, epidemiology, molecular genetics, and others, to better understand the efficacy of tick-borne brucellosis. By amalgamating multiple disciplines, we can enhance our comprehension and proficiency in tackling tick-borne brucellosis.